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Frequency Shift Observer for an
SNS Superconducting RF Cavity

Sung-Il Kwon, Amy Regan, and Mark Prokop

Abstract—In contrast to a normal conducting RF cavity, a su-
perconducting RF cavity is very susceptible to shifts in its reso-
nance frequency. The main sources of the shift are Lorentz force
detuning and microphonics. In spallation neutron source, to com-
pensate for the frequency shift, a feedforward control is to be ap-
plied. In this paper, as an initiative step, a frequency shift observer
is proposed which is simple enough to be implemented with a dig-
ital signal processor in real time. Simulation results of the proposed
frequency shift observer show reliable performance and acceptable
computation time for the real time implementation.

Index Terms—Disturbance observer, feedback control, feed-
forward control, Lorentz force detuning, microphonics, spallation
neutron source (SNS), superconducting RF cavity.

I. INTRODUCTION

T HE spallation neutron source (SNS) linac to be built at
Oak Ridge National Laboratory (ORNL), TN, consists of

a combination of low energy normal conducting (NC) acceler-
ating structures as well as higher energy superconducting RF
(SRF) structures. In order to provide the stable cavity field so
that the beam obtains the full power from the input RF power,
the RF control systems for both the NC and SRF portions of the
linac are designed to maintain the cavity field at a specific am-
plitude and phase.

In contrast to a NC cavity, an SRF cavity is very susceptible
to the resonance frequency shift due to thin walls and high
loaded . There are several sources of the resonance frequency
shift, the major ones being the Lorentz force detuning and
microphonics.

The RF magnetic field in a SRF cavity interacts with the RF
wall current resulting in a Lorentz force, which is significant
at high accelerating fields and for a pulsed accelerator such as
an SNS or TESLA facility [1]. The radiation pressure, which is
proportional to the square of magnetic field intensity and accel-
erating gradient, causes a small deformation of the cavity shape
resulting in a shift of its resonance frequency, called Lorentz
force detuning [2]. Lorentz force detuning influences the perfor-
mance of the low level RF control system due to the extra power
needed to control an incorrectly tuned cavity. In the feedback
loop, a klystron can be treated as an actuator with nonlinear sat-
uration characteristics. The klystron should not be operated in
its saturation region. For the SNS SRF linac in SNS, RF power
systems are designed to have 33% power control margin which
is required to compensate for the Lorentz force detuning, micro-
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phonics, transmission line losses, and electronic hardware dis-
turbances. The required power due to the Lorentz force detuning
is proportional to the square of the Lorentz force detuning. In the
case of a medium beta SRF cavity #70 in the SNS SRF linac,
the expected Lorentz force detuning is Hz and the cor-
responding required power is 26 kW [3]. In order to prevent
the klystron from operating in the saturation region, a hardware
limiter or a software limiter can be implemented in the low level
RF control system. In this case, when the low level RF control
system output reaches the upper bound of the limiter due to the
increasing Lorentz force detuning, the control system does not
supply enough output to compensate for the Lorentz force de-
tuning. One way to avoid this actuator saturation is to make the
klystron operate in such a way that it generates enough max-
imum output power to guarantee power control margin for the
frequency shift, thus requiring a lot of klystron power overhead
for the minimum detuning regime. Another possible way is to
apply predetuning (frequency offset). When the Lorentz force
detuning due to one RF pulse decays rapidly enough to allow the
initial values of the next RF pulse to be within a certain range,
then the determination of the required predetuning is a relatively
easy task. However, the initial values at the beginnings of RF
pulses are difficult to predict [4].

Another source of the resonance frequency shift is micro-
phonics [2]. The loaded , of a SRF cavity is much higher
than that of a NC cavity. The resulting narrow bandwidth
makes SRF cavities more sensitive to mechanical vibrations.
Heavy machinery can transmit mechanical vibrations through
the beamline, ground, supports, and cryostat to the cavity.
Mechanical vacuum pumps can interact with the cavity through
the beam tubes. Vibrations generated by compressors and
pumps of the refrigerator can be transmitted to the cavity. The
spectrum of mechanical vibrations is filtered by the transfer
medium and finally interacts with the cavity. In SNS, the
expected microphonics amplitude limit is 100 Hz and the
average value is 9 Hz [5].

The Lorentz force detuning can be compensated by in-
creasing the mechanical stiffness of the cavity by using a
mechanical structure such as stiffing ring and/or by applying
a proper feedback or feedforward technique. In the TESLA
facility, an adaptive feedforward control with piezosensor and
piezoactuator (tuner), has been considered for RF pulse-to-pulse
Lorentz force detuning compensation [6]. The control is based
on experimental measurement of a SRF cavity after the cavity
is assembled. Hence, the mechanical modes of interest are
fixed and the Lorentz force detuning at the next RF pulse is
predictable with the current measured data, that is, the Lorentz
force detuning is highly repetitive. Also, with their cavity
design, the Lorentz force detuning does not require excessive
power control margin.
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Fig. 1. Lorentz force detuning with respect to mechanical time constants.

In SNS, as an alternative approach, a pure feedforward
control based on the disturbance estimation is considered.
Compared with the case when the cavity is being driven on
resonance, the frequency shift is a time varying disturbance
and elimination of disturbance’s effect is a major objective
in the control of industrial systems. For linear systems, many
approaches have been proposed to eliminate disturbance. The
introduction of the integral action is an easily considered
method. One way to embed the integral action is to enforce
it in the controller as is the case of a PI controller. Another
method is to model the disturbance and design a controller
and then the integral action arises naturally. In [7] and [8],
the Lorentz force detuning is modeled with a superposition
of vibrations of mechanical modes in the SRF cavity and
a proportional-integral derivative (PID) feedback controller
used for the cavity field stabilization partially compensates
for the Lorentz force detuning. When the variation rate of
the disturbance is large or the magnitude of the Lorentz force
detuning is large, then the performance of the controller where
the integral action is embedded is not satisfactory. Specifically,
when the magnitude of the Lorentz force detuning is large,
then the RF pulse-to-pulse based feedforward control may not
achieve the satisfactory performance. Before the feedforward
control starts to work, the control system may lose its stability
unless sufficient power control margin is reserved. Hence, it
may be necessary to design a controller which is not based on
RF pulse-to-pulse measurements but based on instantaneously
measuring/estimating and updating data like Kalman predic-
tion. When the Lorentz force detuning model considering all
dominant mechanical mode frequencies is used, the controller
complexity increases as well.

In order to incorporate the information on disturbances such
as spectrum and magnitude to the controller, sensors are used
to measure disturbances directly, or disturbance observers
are designed and disturbance properties from the measured
input–output data are estimated. In this paper, as an initiative
step for a pure feedforward control, a frequency shift observer
is proposed. The frequency shift observer yields the estimate of
the frequency shift with measured outputs-cavity field in-phase

and quadrature, and measured inputs-klystron output in-phase
and quadrature (or low level RF controller output in-phase and
quadrature). The computational time of the frequency shift
estimator is small enough to be implemented with a digital
signal processor (DSP) in a real time manner. Based on the
estimated frequency shift, a pure feedforward controller can be
designed in such a way that the (time varying) tuning frequency
(frequency offset), which is the negative of the estimated
frequency shift, is generated.

II. L ORENTZ FORCEDETUNING MODEL

The Lorentz force detuning is an important factor of the RF
frequency shift in SRF cavities. Many researches have focused
on the Lorentz force detuning modeling. The Lorentz force
detuning is modeled as a first-order differential equation or
as a second-order differential equation. When the damping is
sufficiently large, then the second-order differential equation
model is approximated by the first-order differential equation
even though it is difficult to obtain large damping in a SRF
cavity. With a feedback controller, the frequency shift can be
compensated partially [7], [8]. However, there may be limita-
tion to the performance achieved by the feedback controller. For
SNS, the RF pulse repetition period is 16.667 ms (1/60 Hz). At
the end of a RF pulse, the RF field constructed in a SRF cavity
decays to zero with the cavity time constant much shorter than
the time between RF pulses. Hence, the Lorentz force detuning
during the RF pulse off period approximately behaves as a
decaying oscillation, whose amplitude is determined by the
values of the Lorentz force detuning and the variation rate of
the Lorentz force detuning (velocity) at the end of the current
RF pulse, and whose decay rate is determined by the damping
constant of the mechanical mode.

A. First-Order State Space Model

The Lorentz force detuning is modeled as a first-order differ-
ential equation given below [1], [9]:

(2.1)
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where is the accelerating gradient of a cavity and
is the mechanical time constant of a cavity. The mechanical
time constant determines whether the Lorentz force detuning
decays completely or not at the instance of a new RF pulse.
Fig. 1 shows the relation between the mechanical time con-
stant and the Lorentz force detuning during one full RF rep-
etition period ( Hz) for MV/m and for

Hz/(MV/m) . With the mechanical time con-
stant, msec, the decay time of the Lorentz force de-
tuning is about 5.8 ms, which implies that there is no interaction
between two consecutive RF pulses since the next RF pulse oc-
curs 16.667 ms later.

The first-order state space model can be used for the approx-
imation of the second-order model when the damping constant
is sufficiently large. However, the numerical analysis [10], [11]
show that the first-order state space model of the Lorentz force
detuning is not appropriate due to small damping constants of
the SNS SRF cavities.

B. Second-Order State Space Model

The situation is complicated when the Lorentz force detuning
is modeled as a second-order differential equation and when
several mechanical modes exist in a SRF cavity. Detailed in-
vestigation has been performed by Ellis [10] and Mitchell [11].
Sundelin [4] has investigated the Lorentz force detuning when
the mechanical mode frequency is assumed to be 495 Hz with
respect to mechanical quality factor,. For a medium- SRF
cavity in SNS, the cavity’s mechanical damping constant is very
small and so the developed Lorentz force detuning does not
decay before the next RF pulse comes.

As was mentioned in [4], for the small damping constant, the
swing of the developed Lorentz force detuning is 2 times that
of the static Lorentz force detuning, i.e., .
Hence, the power control margin estimation and the cavity field
stabilization are much more complicated tasks. For a mechan-
ical mode frequency, , a second-order differential equation
defines the Lorentz force detuning

(2.2)

where is a weighting parameter to be specified in the following
and

;

general mass;
stiffness constant;
damping constant;
cavity voltage.

Since the cavity voltage and the accelerating electric field
are expressed as : cavity length, (2.2) can

be written as

(2.3)

The static Lorentz force detuning can be obtained by setting
and of (2.3)

(2.4)

Since the static Lorentz force detuning is given by

(2.5)

it follows from (2.4) and (2.5) that the constantis given by

(2.6)

Inserting (2.6) to (2.3), we obtain

(2.7)

Note that the first-order differential equation given in Sec-
tion II-A is an approximation of the above equation in the case
when the damping constant is sufficiently large.

Define

Then, (2.7) can be written as the formal second-order state space
equation describing the Lorentz force detuning due to a single
mechanical mode vibration

(2.8)

(2.9)

When multimechanical modes are considered, the mod-
eling of the Lorentz force detuning is complicated. Cross
coupling of mechanical mode vibrations must be consid-
ered. This means that the Lorentz force detuning constants

, for each mechanical mode are dis-
tributed with certain conditions, and boundary conditions of the
second-order differential equations for each mechanical mode
need to be assigned properly. Details are addressed in [8].

III. SUPERCONDUCTINGRF CAVITY MODEL AND FREQUENCY

SHIFT MODEL

A SRF cavity is given by the state space model [1], [12]

(3.1)

(3.2)

where

(3.3)

and

(3.4)
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and
predetuning frequency against beam
loading [rad/s];
Lorentz force detuning [rad/s];
microphonics [rad/s];
unloaded cavity damping time constant [s];
loaded cavity damping time constant [s];
cavity resonator unloaded quality factor;
cavity resonance frequency [rad/s];
resistance of the Equivalent circuit of
cavity transformed to RF generator ;
transmission line characteristic impedance

;
transformation ratio;
forward In-phase (I) and quadrature
[V];
beam current in In-phase (I) and quadrature

[A];
cavity field in-phase (I) and quadrature
[V].

Note that since . In the above model,
is the sum of the predetuning, , the Lorentz force

detuning, , and microphonics, . The state space
model given by (3.1)–(3.2) can be written by

(3.5)

(3.6)

where

(3.7)

The objective of this paper is to design an observer such that the
estimate yielded by the observer exponentially approaches
the frequency shift . As mentioned in the previous section,
when the Lorentz force detuning model includes all mechan-
ical mode dynamics, the observer structure may be complicated
and computational complexity increases. Instead of this com-
plex higher order model, the frequency shift is modeled as

(3.8)

The model (3.8) is widely used for constant or slowly varying
disturbance. The augmented state space model is with outputs,

and inputs

(3.9)

(3.10)

IV. FREQUENCYSHIFT OBSERVERS

A. First-Order State Space Model

The frequency shift is modeled as given in (3.8) If an observer
has sufficiently fast dynamics as compared with the time vari-
ations of the Lorentz force detuning and microphonics, the ob-
server can estimate the frequency shift due to the Lorentz force
detuning, microphonics, and predetuning against beam loading.
For the augmented system given by (3.9)–(3.10), a full-order
observer is proposed [13]

(4.1)

where is a nonlinear observer gain matrix.
Define the observer error as

(4.2)

The observer error dynamics is given by

(4.3)
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The gain matrix is designed so that the ma-
trix is Hurwitz stable. The assignability of the poles of
is given by the (local) observability at which is character-
ized by the observability matrix [13], [14]

...
...

(4.4)

Whenever has full rank at , then
the augmented system is locally observable. Since
rank , the augmented system is
observable and the poles of can be assigned arbitrarily.

When beam is not loaded , the observer error dy-
namics (4.3) is reduced to

Hence, the estimate error converges to zero andis the es-
timate of the lumped sum, . When beam
is loaded , since the frequency shift due to beam loading
is asymptotically cancelled out by the predetuning, , the
observer error dynamics (4.3) asymptotically approaches to

and the estimate error converges to zero andis the estimate
of the lumped sum, .

B. Reduced-Order Observer

The full-order observer uses all state variables of the aug-
mented system and as a result the observer has the dimension
3. It is possible to build a reduced order observer if the number
of the state variables of the original system, 2 is strictly greater
than the number of the disturbance to be estimated 1. The
minimal order possible is 2 .

Define the augmented state vector as

(4.5)

The reduced augmented system is given by

(4.6)

(4.7)

Define a reduced order observer as follows:

(4.8)

where

(4.9)

Define the estimate error as

(4.10)

Then, the estimate error dynamics is given by

(4.11)

Since the reduced augmented system is locally observable, the
poles of the matrix are arbitrarily assignable. Let and

be stable desired poles of . Since

(4.12)

the observer gains are given by

(4.13)

(4.14)

By choosing and properly, the speed of the observation is
determined.

When beam is not loaded , the observer error dy-
namics (4.11) is reduced to

Hence, the estimate error converges to zero andis the es-
timate of the lumped sum, . When beam
is loaded , since the frequency shift due to beam loading
is asymptotically cancelled out by the predetuning, , the
observer error dynamics (4.11) asymptotically approaches to

and the estimate error converges to zero andis the estimate
of the lumped sum, .

C. Nonlinear First-Order Observer

The reduced observer given by (4.8) estimates both the state
and the frequency shift . However, the state is the

output and, hence, it is unnecessary to include the estimate
in the observer. In this section, a pure disturbance observer,

frequency shift observer, is proposed.
Consider the state equation for the cavity field quadrature

(4.15)
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Equation (4.15) is written as

(4.16)

Consider the term of the right-hand side of
(4.16). It follows that

(4.17)

where is the forward voltage desired for the cavity field am-
plitude, is the wall power dissipation, is the beam power,

is the design cavity voltage, and is the synchronous phase.
Since and for a SRF cavity, (4.17) re-
duces to

(4.18)

Consider the predetuning frequency . Since

(4.19)

where is the detuning angle due to the beam loading and since
the beam loading factor for a SRF cavity, it is given by

(4.20)

It follows from (4.19) and (4.20) that

(4.21)

Now consider (4.18) and (4.21). When the cavity operates on
resonance with a generator and the cavity field is settled down
to the neighborhood of the desired values, then the imaginary
part of the cavity field, , is close to zero, which yields

. Therefore,

(4.22)

and (4.16) can be written as

where .
In summary, it follows from (3.4) and (4.22) that (4.16) has

two forms depending upon whether beam is loaded or not. When
beam is unloaded, (4.16) reduces to

(4.23)

and when beam is loaded, it reduces to

(4.24)

For the frequency shift estimation, a disturbance observer is
proposed as follows:

(4.25)

It follows from (3.8) and (4.25) that the observer error dynamics
is given by

(4.26)

The observer gain is determined so that the characteristic
equation

(4.27)

has a desired root in the left half plane of the complex domain.
The observer error dynamics (4.26) shows that for a properly
chosen gain , the estimate asymptotically converges to

when beam is unloaded, and to
when beam is loaded.

The observer (4.25) is difficult to implement practically be-
cause the derivative term is noisy and is hard to measure. A
filter whose transfer function is where is a small
constant can be used to approximate the derivative. In this paper,
a new variable is introduced

(4.28)

where is a nonlinear function of to be determined as
follows.

The derivative of (4.28) with respect to time is

(4.29)

When is determined so that it satisfies

(4.30)

then (4.29) reduces to

(4.31)
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Fig. 2. Observer performances for the Lorentz force detuning in [3]. For the reduced observer,r = r = 6:2832e4 are used and for the nonlinear first-order
observer,l = 6:2834e4 is used. Microphonics is not included in the model.

and the Lorentz force detuning estimate is given by

(4.32)

It is easily verified that the observer error dynamics is given by

(4.33)

The estimate approaches the frequency shift if is
chosen such that (4.33) is asymptotically stable. One possible
solution for is

(4.34)

where is a positive constant. In this case, the observer error
dynamics becomes

(4.35)

and the convergence rate can be specified by the parameter.
From (4.30), the corresponding becomes

(4.36)

V. SIMULATIONS AND EXPERIMENTS

In the previous section, three frequency shift observers have
been proposed. For SNS, an observer is to be used together with
the piezoactuator in order to compensate for the frequency shift
in a SRF cavity. The chosen observer is implemented with a DSP
and so the observer should be as simple as possible for the real
time implementation provided with satisfactory performance. In
addition, the observer is turned on when the RF is turned on and
is turned off when RF is turned off. During the RF turn off pe-
riod, the cavity field control is turned off and hence, the in-phase
and quadrature of cavity field are difficult to predict. If their be-
haviors during the RF off period are the solutions of the stable
first-order differential equations with zero inputs, then the pro-

posed observer do not need to be turned off and it can estimate
frequency shift. As mentioned in [10], the dominant frequencies
of the mechanical modes for the medium-SRF section exist
up to 2.0 kHz and the dominant frequencies of microphonics
are within a few hundred Hertz. For satisfactory performance of
the observer, the sampling frequency of the observer must be at
least 20 kHz. The simple Euler method is used for the discretiza-
tion of the observers and the reduced observer and the nonlinear
first-order observer are simulated in the MATLAB/SIMULINK
[15] environment.

Fig. 2 shows the observer performances where the Lorentz
force detuning of a single mechanical mode of frequency
494.73 Hz [4], predetuning against beam loading, and beam
loading yield frequency shift. Fig. 2 illustrates that the non-
linear first-order observer yields better performance over
the reduced order observer. The sampling frequency of both
observers is 40 kHz. Note that in Fig. 2, during the cavity
filling time (RF pulseON, beamOFF), the sum of the Lorentz
force detuning and the predetuning against beam loading,

Hz, is
estimated. During the beam loading period (RF pulseON,
beamON), the predetuning frequency is cancelled out by beam
loading and the observers estimate the Lorentz force detuning.
Fig. 3 shows the simulation results where microphonics is
additionally included in the model. During the cavity filling
time (RF pulseON, beamOFF), the sum of the Lorentz force
detuning, microphonics, and the predetuning against beam
loading, is estimated. During the beam loading period (RF pulse
ON, beamON), the predetuning is offset by beam loading and
the observers estimate the sum of the Lorentz force detuning
and microphonics. Fig. 4 shows the simulation results where
the Lorenz force detuning as addressed in [10] is considered.
In this simulation, microphonics is not included.

The discretized observers are sensitive to both the observer
gains and the sampling frequency. For a fixed sampling fre-
quency of 40 kHz, in order to investigate the observer perfor-



208 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 50, NO. 1, FEBRUARY 2003

Fig. 3. Observer performances for the Lorentz force detuning in [3]. For the reduced observer,r = r = 6:2832e4 are used and for the nonlinear first-order
observer,l = 6:2834e4 is used. Microphonics is included in the model.

Fig. 4. Observer performances for the Lorentz force detuning in [8]. For the reduced observer,r = r = 6:2832e4 are used and for the nonlinear first-order
observer,l = 6:2834e4 is used. Microphonics is not included in the model.

mances with respect to observer gains, different and are
applied. Fig. 5 shows this simulation results, which illustrate
that the reduced order observer is more sensitive to the observer
gain change than the nonlinear first-order observer. When the
sampling frequency is increased, higher observer gains can be
used and observers guarantee fast responses with initial fast de-
caying oscillation.

Considering the simulation results, the nonlinear first-order
observer is chosen for the frequency shift observer of a SRF
cavity. The observer is implemented in a TMS320C6201 eval-
uation module (EVM) [16], which includes an A/D converter
(ADC) and a D/A converter (DAC). The clock speed of the DSP
is 133 MHz and the sampling frequency of the ADC and DAC is
40 kHz. Currently, a prototype SRF cavity is being developed at

Jefferson National Laboratory, so real data is not yet available.
At Los Alamos National Laboratory, extensive modeling and
simulation with MATLAB/SIMULINK for a SRF cavity has
been performed [17]. For the observer performance investiga-
tion, SIMULINK simulation data of the klystron output I/Q and
cavity field I/Q were used and the observer was implemented in
a TMS 320C6201 EVM.

Fig. 6 shows the experiment result of the nonlinear
first-order observer where the Lorentz force detuning results
from a 494.73-Hz-single-mechanical-mode vibration [4]. Fig. 7
shows the result of the nonlinear first-order observer where
the Lorentz force detuning results from 29 mechanical mode
vibrations [10]. For one data sample, the computational time
was 21 CPU clock cycles. When 200 MHz CPU clock is used
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Fig. 5. Observer performances for the Lorentz force detuning in [3]. For the reduced observer,r = r = 7:5398e4 are used and for the nonlinear first-order
observer,l = 7:5398e4 is used. Microphonics is not included in the model.

Fig. 6. DSP implementation result for nonlinear first-order observer performance experiment for the Lorentz force detuning in [3]. For the nonlinear first-order
observer,l = 6:2834e4 is used. Microphonics is included in the model. The RF pulse ON period is 1.3 ms and the sampling frequency is 40 kHz. Hence, the total
data points during one RF pulse are 52.

for the DSP, the computational time is 0.11s. Hence, the
sampling frequency should be less than 9.5 MHz. With this
sampling frequency, observer gains can be determined so as to
guarantee fast response of observers.

Numerical analysis addressed in [10] shows that the distri-
bution of mechanical mode frequencies is up to a few thou-
sand Hertz. However, the dominant mechanical mode vibrations
which contribute to the Lorentz force detuning result from the
several low frequencies. Hence, the proposed deterministic ob-
servers can be applied to estimate the Lorentz force detuning.
Additionally, the frequencies of microphonics reported in [6] are
less than a few hundred Hertz. Hence, the proposed observers

can be applied to estimate microphonics when it is determin-
istic. However, when microphonics is driven by stochastic noise
processes, the deterministic frequency shift can be estimated by
applying Kalman estimation technique [18].

VI. CONCLUSION

In this paper, three deterministic disturbance observers
have been proposed to estimate the frequency shift in a SRF
cavity. Through computer simulations, the performances of
the observers were investigated and the appropriate observer
for the real time implementation in a DSP was chosen. The
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Fig. 7. DSP implementation result for nonlinear first-order observer performance experiment for the Lorentz force detuning in [8]. For the nonlinear first-order
observer,l = 6:2834e4 is used. Microphonics is not included in the model. The RF pulse ON period is 1.3 ms and the sampling frequency is 40 kHz. Hence, the
total data points during one RF pulse are 52.

selected observer, nonlinear first-order observer, is simple and
yields the satisfactory performance. The observer algorithm
was implemented in TMS320C6201 EVM and the observer
performance was investigated. The experiment shows that the
proposed observer had reasonable computational time and was
reliable, promising for frequency shift estimation of a SRF
cavity.
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